

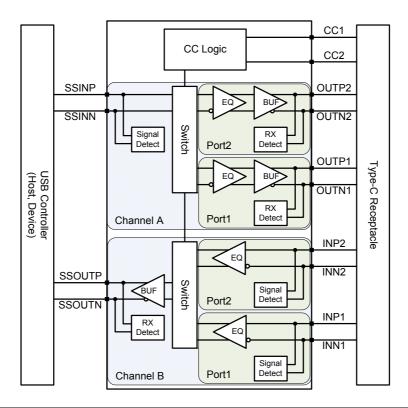
THCX423R10

High Performance Bi-directional Active Switch with Equalizer

General Description

The THCX423R10 is a high performance bidirectional active switch for USB3.1 Gen1 and high speed interface like V-by-One® HS.

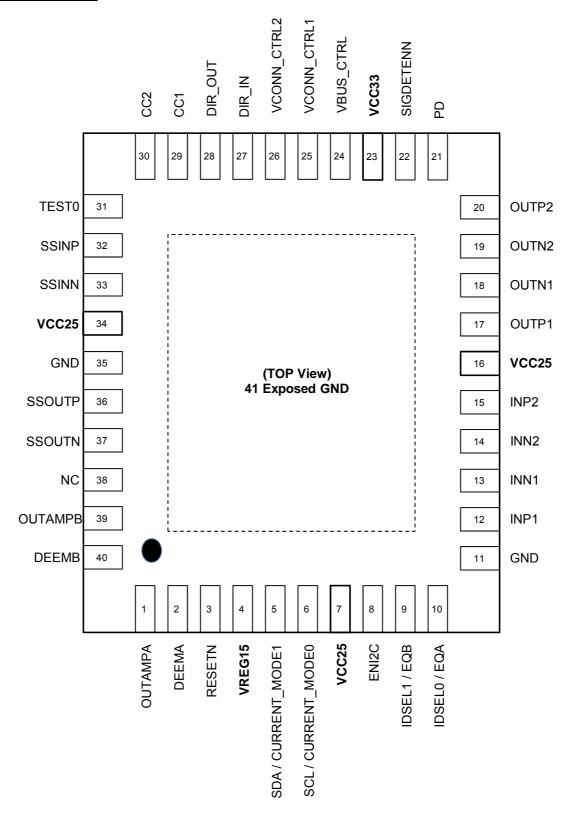
The THCX423R10 features a continuous time linear equalizer (CTLE) to provide a boost up to +11.6dB at 5 GHz. It opens an input eye even though it is completely closed due to inter-symbol interference (ISI) induced by the inter-connect mediums. The transmitter features a programmable output deemphasis driver with up to -8.5 dB and allows adjustable amplitude voltage from 600mVp-p to 1300mVp-p to suit multiple application scenarios.


Features

- MUX and DEMUX
- Receive Equalization up to +11.6dB@5GHz
- Transmit De-Emphasis up to -8.5dB
- Transmit VOD Control: 600 to 1300 mVp-p
- Support USB 3.1 Gen1 and USB Type-CTM
 - Integrated CC Logic
 - Receiver and LFPS Detect
- Available in single supply voltage 3.3V with integrated LDO
- ESD: HBM ±4kV
- QFN40 (5.0mm x 5.0mm)

Applications

- Flip-ability USB Type-CTM
- USB Host and Devices
- V-by-One[®] HS
- CML Interface


Block Diagram

Copyright©2018 THine Electronics, Inc.

Pin Configuration

Pin Description			
Pin Name	Pin No	Type	Description
SSINP	32	CI	Super-Speed CML Channel A (CHA) Signal Input (USB controller side)
SSINN	33	CI	Super-Speed CML Channel A (CHA) Signal Input (USB controller side)
SSOUTP	36	СО	Super-Speed CML Channel B (CHB) Signal Output (USB controller side)
SSOUTN	37	СО	Super-Speed CML Channel B (CHB) Signal Output (USB controller side)
OUTP1	17	СО	Super-Speed CML Port 1 of CHA Signal Output (Type-C Receptacle side)
OUTN1	18	СО	Super-Speed CML Port 1 of CHA Signal Output (Type-C Receptacle side)
OUTP2	20	СО	Super-Speed CML Port 2 of CHA Signal Output (Type-C Receptacle side)
OUTN2	19	СО	Super-Speed CML Port 2 of CHA Signal Output (Type-C Receptacle side)
INP1	12	CI	Super-Speed CML Port 1 of CHB Signal Input (Type-C Receptacle side)
INN1	13	CI	Super-Speed CML Port 1 of CHB Signal Input (Type-C Receptacle side)
INP2	15	CI	Super-Speed CML Port 2 of CHB Signal Input (Type-C Receptacle side)
INN2	14	CI	Super-Speed CML Port 2 of CHB Signal Input (Type-C Receptacle side)
PD	21	1	Power Down 0: Operation 1: Chip Power Down
SIGDETENN	22	I	Signal Detect Enable 0: Enable 1: Disable
TEST0	31	1	Test pin. Must be tied to ground for normal operation.
RESETN	3	I	Reset 0:Chip Reset 1:Operation
CC1	29	LCI	Type-C configuration channel signal 1
CC2	30	LCI	Type-C configuration channel signal 2
DIR_IN	27	1	Port select input 0:Port1 1:Port2
DIR_OUT	28	0	Determination result by CC Logic L:Port1 H:Port2
VCONN_CTRL1	25	0	VCONN port control signal 1 L:Not apply VCONN H:Apply VCONN
VCONN_CTRL2	26	0	VCONN port control signal 2 L:Not apply VCONN H:Apply VCONN
VBUS_CTRL	24	0	VBUS port control signal L:Not apply VBUS H:Apply VBUS

			0 - 11-1/5 1-1-
		1.	2-wire serial I/F enable
ENI2C	8		0:2-wire serial I/F access disable
			1:2-wire serial I/F access enable
			SDA/CURRENT_MODE1 pin has dual function.
SDA/			SDA: SDA input /output for 2-wire serial I/F when
CURRENT_MOD	5	ВО	ENI2C=1
E1			CURRENT MODE1: Type-C current advertisement
			setting when ENI2C=0
CCL /			SCL/CURRENT_MODE0 pin has dual function.
SCL/	0	D0	SCL: SCL input for 2-wire serial I/F when ENI2C=1
CURRENT_MOD	6	ВО	CURRENT MODE0: Type-C current advertisement
E0			setting when ENI2C=0
			IDSEL0/EQA pin has dual function.
			IDSEL0: 2-wire serial I/F device address setting when
	10	21.1	ENI2C=1.
IDSEL0/EQA	10	3LI	EQA: Controller Side Rx equalizer setting for CHA
			when ENI2C=0.
			Low:2.0dB / Float:4.0dB / High:8.0dB
	0	01.1	Receptacle Side Tx de-emphasis setting for CHA
DEEMA	2	3LI	Low:3.5dB / Float:6.0dB / High:8.5dB
OLITANADA	4	3LI	Receptacle Side Tx output swing setting for CHA
OUTAMPA	1	SLI	Low:600mV / Float:1000mV / High:1300mV
			IDSEL1/EQB pin has dual function.
			IDSEL1: 2-wire serial I/F device address setting when
		21.1	ENI2C=1.
IDSEL1/EQB	9	3LI	EQB: Receptacle side Rx equalizer setting for CHB
			when ENI2C=0.
			Low:2.0dB / Float:4.0dB / High:8.0dB
DEEMB	40	3LI	Controller side Tx de-emphasis control for CHB
DEEINIR	40	SLI	Low:3.5dB / Float:6.0dB / High:8.5dB
OLITAMOD	20	21.1	Controller side Tx output swing control for CHB
OUTAMPB	39	3LI	Low:600mV / Float:1000mV / High:1300mV
VDEC15	4	ם אים	Decoupling capacitor pin for on-chip regulator.
VREG15	4	PWR	See Figure 1.
VCC25	7,16,34	PWR	Decoupling Capacitor Pin, 2.5V output. See Figure 1.
VCC33	23	PWR	Power supply pin for on-chip regulator. See Figure 1.
	44.05		Ground. Must be tied to the PCB ground plane through
GND	11,35,	GND	an array of vias.
	41		Pin#41 is exposed pad ground.
NC	38	NC	Non-connection pin. Must be open.

CI: CML Input buffer, CO: CML Output buffer

I: LVCMOS Input buffer, O: LVCMOS Output buffer, BO: Open-Drain LVCMOS Bi-directional

LCI: Level Control LVCMOS Input buffer, 3LI: 3-Level LVCMOS Input buffer,

PWR: Power supply, GND: Ground, NC: Non-connection pin

Functional Overview

The THCX423R10 has functions as below.

- · MUX and DEMUX
- Signal Conditioning (Rx Equalizer, Tx de-emphasis, Tx output swing level)
- VBUS,VCONN port control function for USB Type-CTM
- 2-wire serial I/F
- Single Supply Voltage (3.3V)

Operation Mode Settings

Table1 shows the operation mode setting.

Table 1. Operation Mode Setting

	Pin Settings		Operation Mode		
PD	RESETN	ENI2C	Operation Mode		
	0	Ignore	Chip Reset. Power Down except on-chip Regulator		
0	1	0	Normal Operation. Signal Conditioning Settings by External Pin		
	1	1	Normal Operation. Signal Conditioning Settings by 2-wire serial I/F Access		
1	Ignore	Ignore	Chip Power Down.		

On-chip Regulator Settings

The THCX423R10 integrates the On-chip regulator for internal 2.5V and 1.5V circuit which is able to operate under the single supply voltage. On-chip regulator is turned on/off by the PD pin. Bypass VCC33 to GND with 10uF and 1uF to reduce high frequency noise. Bypass each VCC25 to GND with 0.1uF and 1uF, VREG15 to GND with 0.1uF and 1uF make stabilized and remove high frequency noise.

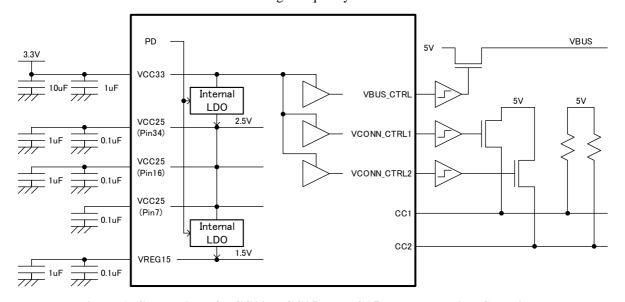


Figure 1. Connection of VCC33, VCC25, VREG15 and Decoupling Capacitor

Copyright©2018 THine Electronics, Inc.

Rx Equalization Setting

THCX423R10 receiver have controls for receiver equalization. The receiver equalization gain value can be controlled either through 2-wire serial interface registers or through pins.

Table 2. Rx Equalization Setting

Pins		Registers							@2.FQU-	@FQU-
EQx	CHx	_PORT	1_EQ_	SET	CHx	_PORT	2_EQ_	SET	@2.5GHz [dB]	@5GHz [dB]
LQX	7	6	5	4	3	2	1	0	[ub]	[ub]
	0	0	*	*	0	0	*	*	0	0.05
	0	1	0	*	0	1	0	*	0	0.1
	0	1	1	0	0	1	1	0	0	0.2
-	0	1	1	1	0	1	1	1	0	0.3
	1	0	0	0	1	0	0	0	0	0.9
	1	0	0	1	1	0	0	1	0	1.5
0	1	0	1	0	1	0	1	0	0	2.0
-	1	0	1	1	1	0	1	1	1.3	3.8
F	1	1	0	0	1	1	0	0	1.5	4.0
1	1	1	0	1	1	1	0	1	5.1	8.0
-	1	1	1	*	1	1	1	*	8.6	11.6

x=A,B

Tx Equalization Setting

THCX423R10 transmitter have controls for de-emphasis function. The de-emphasis gain value can be controlled either through 2-wire serial registers or through pins.

De-emphasis function works under less 5ns width pulse.

Table 3. De-Emphasis Setting (CHA)

Pins		Registers							
DEEMA	CHA_P	ORT1_DE	M_SET	CHA_P	CHA_PORT2_DEEM_SET				
DEEMA	5	4	3	2	1	0	[dB]		
-	0	0	0	0	0	0	0		
0	0	0	1	0	0	1	3.5		
F	0	1	1	0	1	1	6.0		
1	1	1	1	1	1	1	8.5		

Table 4. De-Emphasis Setting (CHB)

Pins		Value		
DEEMB	CHI	B_DEEM_S	SET	[dB]
DECIVID	2	[ub]		
-	0	0	0	0
0	0	0	1	3.5
F	0	1	1	6.0
1	1	1	1	8.5

Tx Output Swing Setting

THCX423R10 transmitter have controls for output swing amplitude. The output swing amplitude can be controlled either through 2-wire serial interface registers or through pins.

Table 5. Output Swing Setting (CHA)

Pins		Registers						
DEEMA	CHA_F	ORT1_VO	D_SET	CHA_P	CHA_PORT2_VOD_SET			
DECIMA	5	4	3	2	1	0	[mVpp]	
-	0	0	0	0	0	0	-	
0	0	0	1	0	0	1	600	
F	0	1	1	0	1	1	1000	
1	1	1	1	1	1	1	1300	

Table 6. Output Swing Setting (CHB)

Pins		Value		
DEEMB	CH			
DEEINID	5	[mVpp]		
-	0	0	0	-
0	0	0	1	600
F	0	1	1	1000
1	1	1	1	1300

Rx Detect

THCX423R10 has Receiver Detect functionality for USB3.x transmission.

Receiver Detect functionality must be disable when it is not USB3.x application.

The way to force Receiver Detect functionality output by resistor is below.

When CHA_RXDET_CTRL_EN and CHB_RXDET_CTRL_EN is 1, Receiver Detect functionality output is forced.

Table 7. Rx Detect Settings

Registers	Address	Enable (Default)	Disable
CHA_RXDET_CTRL_EN	0x09[0]	0	1
CHA_PORT1_RXDET	0x0A[1]	Don't Care	1
CHA_PORT2_RXDET	0x0A[0]	Don't Care	1
CHB_RXDET_CTRL_EN	0x0D[0]	0	1
CHB_RXDET	0x0E[0]	Don't Care	1

Signal Detect

THCX423R10 has Signal Detect functionality.

If this function is enable, the power consumption is low when signal does not input to THCX423R10.

CC Logic

THCX423R10 has function for Configuration Chanel (CC) of USB Type-CTM as below.

- Attach / Detach Detection
- Plug Orientation / Cable Twist Detection
- Configure VCONN

The following table shows how to control CC logic with ENI2C.

Table 8. 2-Wire Signal Interface Control

	Setting	js .	Control		
ENI2C	F	Register	VCONN_CTRL1/2,	Port position	
ENIZC	OVERRIDE_CC	OVERRIDE_LANE_PD	VBUS_CTRL,DIR_OUT	Port position	
0	Ignore	Ignore	Pin Control (*1)	Pin Control (*2)	
	0 0		Pin Control (*1)	Pin Control (*2)	
4	0	1	Pin Control (*1)	Register Control (*4)	
'	1	0	Register Control (*3)	Pin Control (*2)	
	1	1	Register Control (*3)	Register Control (*4)	

- Controlled by CC1 and CC2 pin
- *2
- Controlled by DIR_IN pin
 Controlled by VBUS_CTRL, VCONN_CTRL1 and VCONN_CTRL2 register
 Controlled by pdn_CHA[1:0] and pdn_CHB[1:0] register *3

The Way to be disable CC logic by register is below.

Table 9. CC logic Setting

Registers	Address	Enable (Default)	Disable
OVERRIDE_CC	0x00[0]	0	1
ATTACH	0x03[4]	0	1

CC Logic(2-wire serial interface Disable)

DIR_OUT, VBUS_CTRL and VCONN_CTRL1/2 are controlled in accordance with the state of CC1 and CC2 pin as shown in the following table. ATTACH is an internal signal inside THCX423R10.

Table 10. CC Control

Case No.	CC1	CC2	DIR_ OUT(*1)	VBUS_ CTRL(*2)	VCONN_ CTRL1(*2)	VCONN_ CTRL2(*2)	ATTACH (internal signal)	Function
1	vOpen	vOpen	0	0	0	0	0	Detach. Analog/Digital Power Down
2	vRd	vOpen	0	1	0	0	1	CC1 Attach, Port1 Active
3	vOpen	vRd	1	1	0	0	1	CC2 Attach, Port2 Active
4	vOpen	vRa	0	0	0	0	0	Detach. Analog/Digital Power Down
5	vRa	vOpen	0	0	0	0	0	Detach. Analog/Digital Power Down
6	vRd	vRa	0	1	0	1	1	CC1 Attach, Port1 Active
7	vRa	vRd	1	1	1	0	1	CC2 Attach, Port2 Active
8	vRd	vRd	0	0	0	0	0	(Debug)
9	vRa	vRa	0	0	0	0	0	(Audio)

^{0:}Port1 Active, 1:Port2 Active

Copyright©2018 THine Electronics, Inc.

^{0:}Disable, 1:Enable

CC1 and CC2 pin have 3-level input IO to distinguish the voltage level of vOpen, vRd and vRa. The combination of CURRENT_MODE1 and CURRENT_MODE0 pins adjusts the threshold voltage of 3-level input IO. (Followed by the standard of USB Type-CTM, the threshold voltage of each vOpen, vRd and vRa is controlled by Type-C current advertisement independently.)

Table 11. Current Mode Setting

Setti	ng		CC1 CC2 min
CURRENT _MODE1	CURRENT _MODE0	Current Mode	CC1,CC2 pin Input Threshold Level
0	0	USB Default	
0	1	Medium(Type-C Current 1.5A)	See Table 17
1	0	High(Type-C Current 3.0A)	See Table 17
1	1	Used on the Device Side.	

2-wire serial I/F

THCX423R10 has 2-wire serial I/F Slave block and a customer can control high-speed analog block setting, USB Type-CTM and related functions(VCONN port control, VBUS port control, active data lane select). When ENI2C=1, 2-wire serial I/F slave is active.

Functions of 2-wire serial I/F slave block are as below.

- Standard-mode, Fast-mode, Fast-mode Plus (~1Mbps)
- Selectable 2-wire serial I/F device address (9 address)
- · Burst Access acceptable
- 2-wire serial I/F bus watch dog timer (After receiving 2-wire serial I/F access from a host device, if SDA or SCL is stuck for long time, internal sequence circuit is cleared automatically.)

When ENI2C=1, 2-wire serial I/F device address is selectable by IDSEL1 and IDSEL0 pins. It can select 9 device addresses. See Table 12.

Table 12. Device Address

IDSEL1	IDSEL0	2-wire serial I/F Device Address [6:0] (HEX)
Low	Low	0x0C
Low	Float	0x0D
Low	High	0x0E
Float	Low	0x0F
Float	Float	0x10
Float	High	0x11
High	Low	0x12
High	Float	0x13
High	High	0x14

THine Electronics, Inc.

SC: E

Register Map

Table 13. Register Map

Address (HEX)	Bit	R/W	Default (HEX)	Register Name	Descriptions	Note
	7:2	R		Reserved	-	-
0x00	1	RW	0x03	OVERRIDE_PDN_PORT	0: Allow DIR_IN pin control. 1: Block DIR_IN pin control. Use register.	-
	0	RW		OVERRIDE_CC	0: Allow CC1, CC2 pin control. 1: Block CC1, CC2 pin control. Use register	-
	7:6	RW		CURRENT_MODE	00: USB Default 01: Medium (Type-C current 1.5A) 10: High (Type-C Current 3.0A) 11: Used on Device Side.	See Table 17
0x01	5:4	RW	0x20	CC_DEBOUNCE	tCC Debounce time adjustment 00: 50ms 01: 100ms 10: 150ms (default) 11: 300ms	-
	3:2	R		CC2_MONITOR	00: vOpen 01: vRa 10: vRd 11: Reserved	Active only
	1:0	R		CC1_MONITOR	00: vOpen 01: vRa 10: vRd 11: Reserved	OVERRIDE_CC=0. Otherwise 00 fixed.
	7:4	RW		Reserved	-	-
0x02	3:2	RW	0xBA	RXDET_TIMEOUT	Rx detect timeout value setting 00:12ms 01:13.5ms 10:15ms(Default) 11:16ms	-
0.02	1:0	RW	UNDA .	PD_DEBOUNCE	tPD Debounce time adjustment 00: 5ms 01: 10ms 10: 15ms (default) 11: 30ms	-
	7:5	R		Reserved	-	-
	4	RW		ATTACH	Port Attach state control	
0x03	3	RW	0x00	DIR_OUT	DIR_OUT control	Active only
0,00	2	RW	OXOO	VBUS_CTRL	VBUS_CTRL control	OVERRIDE_CC=1
	1	RW		VCONN_CTRL2	VCONN_CTRL2 control	Otherwise ignored.
	0	RW		VCONN_CTRL1	VCONN_CTRL1 control	
	7:1	R	l	Reserved	- Coft Doort	-
0x04	0	RW	0x00	SFT_RST	Soft Reset 1: Reset registers to default value Automatically cleared into 0 after reset action. 0 is always read.	-
	7:4	R		Reserved	-	-
0x05	3:2	RW	0x00	PDN_CHA	Channel A Power Down 00:Both Port Power Down 01:Only Port2 Active 10:Only Port1 Active 11:Forbidden	Active only OVERRIDE PDN PORT=1
	1:0	RW		PDN_CHB	Channel B Power Down 00:Both Port Power Down 01:Only Port2 Active 10:Only Port1 Active 11: Forbidden	

Table 13. Register Map(continued)

Address (HEX)	Bit	R/W	Default (HEX)	Register Name	Descriptions	Note
	7:6	R		Reserved	-	
0x06	5:3	RW	0x1B	CHA_PORT1_VOD_SET	Output swing control for OUT1(CHA PORT1 side). 001: 600mV typ 011: 1000mV typ (default) 111: 1300 mV typ other: Forbidden settings	-
	2:0	RW		Output swing control for OUT2(CHA PORT2 side). 001: 600mV typ. CHA_PORT2_VOD_SET 011: 1000mV typ (default) 111: 1300 mV typ other: Forbidden settings		-
	7:6	R		Reserved	-	-
0x07	5:3	RW	0x09	CHA_PORT1_DEEM_SET	Tx de-emphasis control for OUT1(CHA PORT1 side). 000: 0dB 001: 3.5 dB typ (default) 011: 6 dB typ 111: 8.5 dB typ other: Forbidden settings	-
0.07	2:0	RW	0,03	CHA_PORT2_DEEM_SET	Tx deemphasis control for OUT2(CHA PORT2 side). 000: 0dB 001: 3.5 dB typ (default) 011: 6 dB typ 111: 8.5 dB typ other: Forbidden settings	-
0x08	7:4	RW	OxAA	CHA_PORT1_EQ_SET	CHA PORT1 Rx equalizer setting. 00**: 0.05 dB 010*: 0.1 dB 0110: 0.2 dB 0111: 0.3 dB 1000: 0.9 dB 1001: 1.5 dB 1001: 2.0 dB (default) 1011: 3.8dB 1100: 4.0 dB 1101: 8.0 dB	-
5,00	3:0	RW	VATA.	CHA_PORT2_EQ_SET	CHA PORT2 Rx equalizer setting. 00**: 0.05 dB 010*: 0.1 dB 0110: 0.2 dB 0111: 0.3 dB 1000: 0.9 dB 1001: 1.5 dB 1010: 2.0 dB (default) 1011: 3.8dB 1100: 4.0 dB 1101: 8.0 dB 1111: 11.6 dB	-
	7:1	R		Reserved	-	-
0x09	0	RW	0x00	CHA_RXDET_CTRL_EN	0: CHA controlled by RXDET signal(Normal Function) 1: CHA controlled by register (Address:0x0A).	-
	7:6	R		Reserved	-	-
	5	RW		CHA_RXDET_VHYS_SET	RXDET hysteresis select(CHA Both PORT) 0: 50mV 1: 100mV(default)	-
	4:2	R		Reserved	-	-
0x0A	1	RW	0x20	CHA_PORT1_RXDET	Rx detect output monitor and control(CHA PORT1 side) 0: No receiver termination. 1: detected receiver termination.	See Descriptions of
	0	RW		CHA_PORT2_RXDET	Rx detect output monitor and control(CHA PORT2 side) 0: No receiver termination. 1: detected receiver termination.	Address 0x09

Table 13. Register Map(continued)

Address (HEX)	Bit	R/W	Default (HEX)	Register Name	Descriptions	Note
	7:6	R		Reserved	-	
0x0B	5:3	RW CHB_VOD_SET		CHB_VOD_SET	Output swing control for SSOUT(CHB) 001: 600mV typ. 011: 1000mV typ(default) 111: 1300 mV typ other: Forbidden settings	-
UXUB	2:0	RW	0.13	CHB_DEEM_SET	Tx deemphasis control for SSOUT(CHB) 000: 0dB 001: 3.5 dB typ(default) 011: 6 dB typ 111: 8.5 dB typ other: Forbidden settings	-
0.00	7:4	RW	OvAA	CHB_PORT1_EQ_SET	CHB PORT1 Rx equalizer setting. 00**: 0.05 dB 010*: 0.1 dB 0110: 0.2 dB 0111: 0.3 dB 1000: 0.9 dB 1001: 1.5 dB 1010: 2.0 dB (default) 1011: 3.8dB 1110: 4.0 dB 1110: 8.0 dB 1111: 11.6 dB	-
0.00	0x0C		CHB_PORT2_EQ_SET	CHB PORT2 Rx equalizer setting. 00**: 0.05 dB 010*: 0.1 dB 0110: 0.2 dB 0111: 0.3 dB 1000: 0.9 dB 1001: 1.5 dB 1010: 2.0 dB (default) 1011: 3.8dB 1100: 4.0 dB 1101: 8.0 dB 1111: 11.6 dB	-	
0x0D	7:1	R	0x00	Reserved	-	-
UXUD	0	RW	0,000	CHB_RXDET_CTRL_EN	0: CHB controlled by RXDET signal(Normal Function) 1: CHB controlled by register (Address:0x0E).	-
	7:6	R		Reserved	-	-
0x0E	5	RW	0x20	CHB_RXDET_VHYS_SET	RXDET hysteresis select(CHB) 0: 50mV 1: 100mV(default)	-
OVOF	4:1	R	0,20	Reserved	-	-
	0	RW		CHB_RXDET	Rx detect output monitor and control(CHB) 0: No receiver termination. 1: detected receiver termination.	-
0x0F	7:1	R	0x00	Reserved	-	-
UXUF	0	RW	UXUU	Reserved	-	-

Absolute Maximum Ratings

Table 14. Absolute Maximum Ratings

Par	ameter		Min	Тур	Max	Unit
Supply Vo	Itage(VC0	C33)	-0.3	-	4.0	V
LVCMOS Inpu	ut/Output	Voltage	-0.3	-	VCC33+0.3	V
Open-Drain LVCMOS Bi-d	irectional	Input/Output Voltage	-0.3	-	VCC33+2.5	V
Level Control LV	CMOS In	out Voltage	-0.3	-	VCC33+2.5	V
3-Level LVCM	IOS Input	Voltage	-0.3	-	VCC33+0.3	V
CML Receiv	er Input V	oltage	-0.3	-	3.0	V
CML Transmit	ter Output	Voltage	-0.3	-	3.0	V
	НВМ	High-Speed CML CC1,CC2	-	-	±4	kV
ESD Rating		All Other Pin	-	-	±2	
		MM	-	-	±200	V
		CDM	-	-	±500	V
Storage ⁻	Temperature		-55	-	125	°C
Junction	Junction Temperature			-	125	°C
Reflow Peak	Γemperatι	ıre/Time	=	-	260/10	°C/sec

Recommended Operating Conditions

Table 15. Recommended Operating Condition

Parameter	Min	Тур	Max	Unit
Supply Voltage(VCC33)	3.0	3.3	3.6	V
Supply Ramp Requirement	0.1	-	50	ms
Operating Temperature	-40	-	85	°C

Equivalent CML Input Diagram

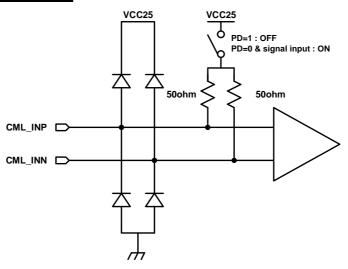


Figure 2. CML Input Schematic Diagram

Equivalent CML Output Diagram

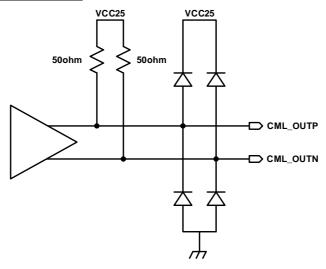


Figure 3. CML Output Schematic Diagram

Electrical Specification

LVCMOS DC Specification

Table 16. LVCMOS DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VIH	High Level Input Voltage	-	2.0	1	VCC33	V
VIL	Low Level Input Voltage	-	0	ı	0.7	V
VOH	High Level Output Voltage	I _{oh} =-2mA	2.4	ı	VCC33	V
VOL	Low Level Output Voltage	I _{ol} =8mA	0	1	0.4	V
IOZH	Output Leak Current High in Hi-Z State	-	-15	ı	15	uA
IOZL	Output Leak Current Low in Hi-Z State	-	-15	-	15	uA

Level Control LVCMOS DC Specification

Table 17. Level Control LVCMOS DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{TH_RaRd_USB}	Voltage Threshold for Detecting an Active Cable Attach	CURRENT_MODE1=0 CURRENT_MODE0=0	0.15	0.2	0.25	٧
VTH_RdOpen_USB	Voltage Threshold for Detecting a UFP Attach	(Default USB)	1.45	1.6	1.7	>
V _{TH_RaRd_MED}	Voltage Threshold for Detecting an Active Cable Attach	CURRENT_MODE1=0 CURRENT_MODE0=1	0.35	0.4	0.45	>
VTH_RdOpen_MED	Voltage Threshold for Detecting a UFP Attach	(Type-C Current 1.5A)	1.45	1.6	1.7	٧
V _{TH_RaRd_HIGH}	Voltage Threshold for Detecting an Active Cable Attach	CURRENT_MODE1=1 CURRENT_MODE0=0	0.72	0.8	0.85	>
V _{TH_RdOpen_HIGH}	Voltage Threshold for Detecting a UFP Attach	(Type-C Current 3.0A)	2.35	2.6	2.8	>
V _{TH_RaRd_DEV}	Voltage Threshold for Detecting an Active Cable Attach	CURRENT_MODE1=1 CURRENT_MODE0=1	0.15	0.2	0.25	٧
V _{TH_RdOpen_DEV}	Voltage Threshold for Detecting a UFP Attach	(Used on Device side)	2.35	2.6	2.8	V
lu o	High Level Input Leak Current	VIN=5.5V	-100	-	100	uA
I _{IH_LC}	High Level Input Leak Current	VIN<2.5V	-15	-	15	uA
IIL_LC	Low Level Input Leak Current	VIN=GND	-15	-	15	uA

3-Level LVCMOS DC Specification

Table 18. 3-Level LVCMOS DC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{THL}	Low-Level Threshold Voltage	*	0.42	0.83	1.25	V
V_{THH}	High-Level Threshold Voltage	*	1.25	1.67	2.08	V
I _{IH_3L}	High Level Input Leak Current	VIN=VCC33	-100	-	100	uA
I _{IL_3L}	Low Level Input Leak Current	VIN=GND	-100	-	100	uA

*Must be tied for setting each level

Low: Tie 1k Ω $\pm 5\%$ to GND

Float: Leave pin open

High: Tie 1k Ω ±5% to VCC33

Open-Drain LVCMOS DC Specification

Table 19. Open-Drain LVCMOS DC/AC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VIL	Low-level Input Voltage ^[1]	-	0	-	0.7	V
VIH	High-level Input Voltage ^[1]	-	1.86	-	5.5	V
V _{OL1}	Low-level Output Voltage	3 mA sink current	-	-	0.4	٧
lol	Low-level Output Current	V _{OL} =0.4V	20	-	-	mA
I _{IH}	High Level Input Leak Current	VIN=5.5V	-10	-	10	uA
I _{IL}	Low Level Input Leak Current	VIN=GND	-10	-	10	uA
Cı	Capacitance for Each I/O Pin	-	-	-	10	pF

Supply Current

Table 20. Supply Current

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
ICCW	Active Made Supply Current	PD=0,EQx*1=High DEEMx*1=High, OUTAMPx*1=High	-	-	170	mA
ICCVV	Active Mode Supply Current	PD=0,EQx*1=Float DEEMx*1=Low, OUTAMPx*1=Float	-	120	-	mA
ICCI	Unplug Mode Supply Current	PD=0, no output load is detected	-	3.0	4.0	mA
ICCS	Power Down Supply Current	PD=1	-	1.0	2.0	mA

^{*1} x=A, B

Receiver DC/AC Specification

Table 21. Receiver DC/AC Specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VIN-DIFF-PP	AC Coupled Differential Input Peak to Peak Signal	10Gbps PRBS9	-	1	1200	mV
R _{RX-DC}	Receiver DC Common Mode Impedance	-	-	30	-	Ω
R _{RX-DIFF-DC}	DC Differential Impedance	-	72	100	120	Ω
RRX-HIGH-IMP- DC-POS	DC Input CM Input Impedance for V>0	-	25	-	-	kΩ
RL _{RX-DIFF}	Rx Differential Return Loss	0.05 to 5 GHz	-	-10	-	dB
RL _{RX-CM}	Rx Common Mode Return Loss	0.05 to 5 GHz	-	-6	-	dB
V _{RX-EQ-LOW}	Input Equalization, 2.0dB	EQx*1=Low	-	2	-	dB
V _{RX-EQ-FLOAT}	Input Equalization, 4.0dB	EQx*1=Float	-	4	-	dB
V _{RX-EQ-HIGH}	Input Equalization, 8.0dB	EQx*1=High	-	8	-	dB

^{*1} x=A, B

Copyright©2018 THine Electronics, Inc.

Transmitter DC / AC specifications

Table 22. Transmitter DC / AC specification

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VTX-DIFF-PP	Differential p-p Tx Voltage Swing	OUTAMPx*1=Float	0.8	1	1.2	
VTX-DIFF-PP-HIGH	High-Power Differential p-p Tx Voltage Swing	OUTAMPx*1=High	-	1.3	-	V
VTX-DIFF-PP-LOW	Low-Power Differential p-p Tx Voltage Swing	OUTAMPx*1=Low	-	0.6	-	
V _{TX-DE-RATIO-LOW}	Tx De-emphasis Ratio	DEEMx*1=Low	-	-3.5	-	dB
V _{TX-DE-RATIO-FLOAT}	Tx De-emphasis Ratio	DEEMx*1=Float	-	-6	-	dB
V _{TX-DE-RATIO-HIGH}	Tx De-emphasis Ratio	DEEMx*1=High	-	-8.5	-	dB
T_DE	De-emphasis Width	-	-	100	-	ps
T _{TX-DJ-DD}	Deterministic Jitter	Loss=18dB@5GHz	•	0.25	-	Ulpp
T _{TX-RJ-DD}	Random Jitter	-	-	0.5	-	ps RMS
T _{TX-RISE-FALL}	Tx Rise/Fall Time	20% to 80 %	-	40	-	ps
TRF-MISMATCH	Tx Rise/Fall Mismatch	-	-	0.01	-	UI
RL _{TX-DIFF}	Tx Differential Return Loss*2	0.05 to 5 GHz	-	-10	-	dB
RLтх-см	Tx Common Mode Return Loss*1	0.05 to 5 GHz	-	-6	-	dB
R _{TX-DIFF-DC}	DC Differential Impedance	-	80	100	120	Ω
VTX-RCV-DETECT	The Amount of Voltage Change Allowed during Receiver Detection	-	-	-	0.6	V
V _{TX-DC-CM}	Transmitter DC Common-mode Voltage	-	-	1.9	-	V
VTX-CM-AC-PP_ACTIVE	Transmitter AC Common-mode Voltage Active	-	1	-	100	mVpp
I _{TX-SHORT}	Transmitter Short-circuit Current Limit	-	ı	20	60	mA
VTX-IDLE-DIFF-DC	DC Electrical Idle Differential Output Voltage	-	0	-	10	mV
CTX-PARASITIC	Tx input capacitance	-	-	-	1.1	pF
TPROPAGATION	Differential Propagation Delay	-	-	150	-	ps
T _{MUX-SWITCH}	Mux/Switch Time	-	-	10	-	us

^{*1} *2 x=A, B

Confirmed evaluation board

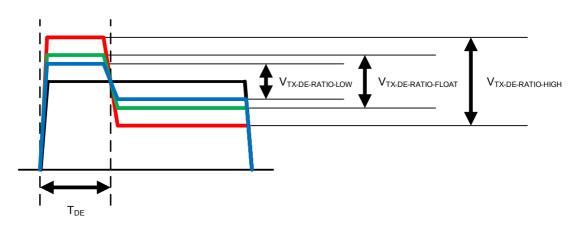


Figure 4. De-emphasis Level

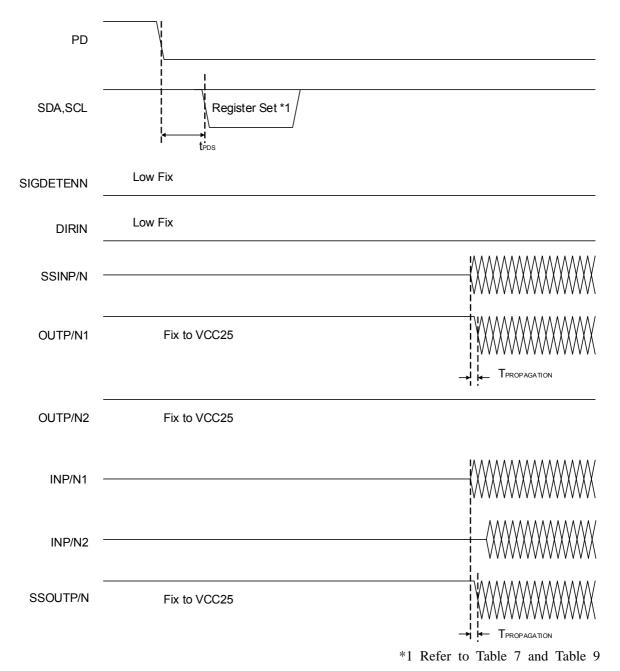


Figure 5 Power on Sequence (Signal Detect Enable/Rx Detect Disable/CC logic Disable/Port 1 Active)

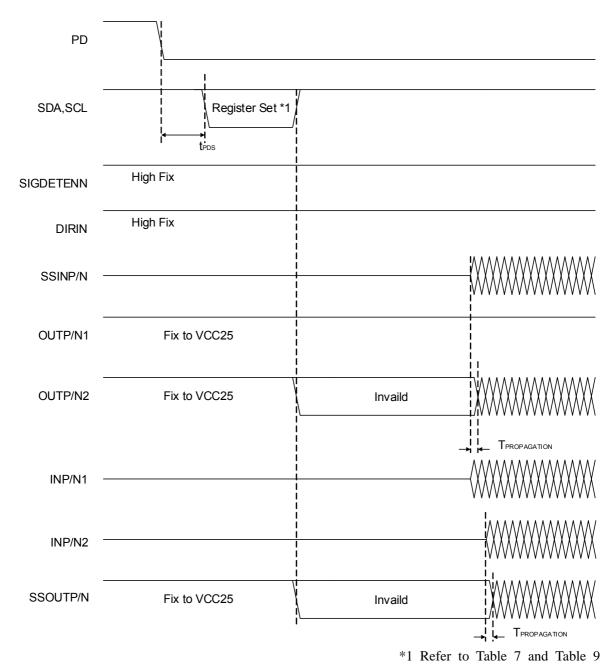


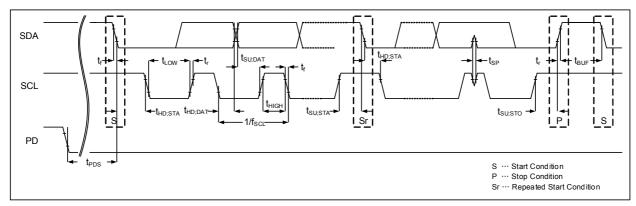
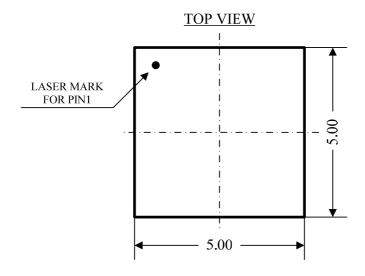
Figure 6 Power on Sequence (Signal Detect Disable/Rx Detect Disable/CC logic Disable/Port 2 Active)

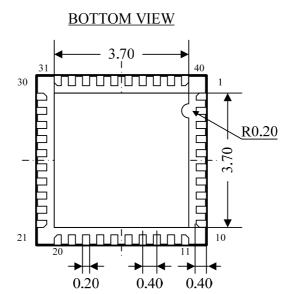
2-wire serial I/F Electrical Characteristics

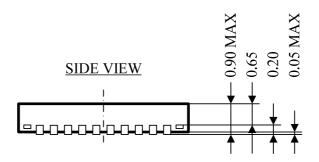
Table 23. Characteristics of the SDA and SCL bus line for 2-wire serial I/F

Over recommended operating supply and temperature range unless otherwise specified

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{SCL}	SCL Clock Frequency	-	0	-	1	MHz
thd;sta	Hold Time (repeated) START Condition	After this period, the first clock pulse is generated.	0.26	-	-	us
t _{LOW}	Low Period of the SCL Clock	-	0.5	-	-	us
t HIGH	High Period of the SCL Clock	-	0.26	-	_	us
tsu;sta	Set-up Time for a Repeated START Condition	-	0.26	-	-	us
thd;dat	Data Hold Time	-	0	-	-	us
tsu;dat	Data Set-up Time	-	50	-	-	ns
t _r	Rise Time of both SDA and SCL Signals	-	-	-	300	ns
t _f	Fall Time of both SDA and SCL Signals	-	-	-	300	ns
t _{su;sto}	Set-up Time for STOP Condition	-	0.26	-	-	us
t BUF	Bus Free Time between a STOP and START Condition	-	0.5	-	-	us
tsp	Pulse Width of Spikes Which Must be Suppressed by the Input Filter	-	-	-	50	ns
t _{PDS}	Required wait time from PD low to START condition	-	1	-	-	ms


Figure 7. 2-Wire Serial Interface Timing Diagram



Package

Unit: mm

Figure 8. 40-pin QFN package physical dimension

Notices and Requests

- 1. The product specifications described in this material are subject to change without prior notice.
- 2. The circuit diagrams described in this material are examples of the application which may not always apply to the customer's design. We are not responsible for possible errors and omissions in this material. Please note if errors or omissions should be found in this material, we may not be able to correct them immediately.
- This material contains our copyright, know-how or other proprietary. Copying or disclosing to third parties the contents of this material without our prior permission is prohibited.
- 4. Note that if infringement of any third party's industrial ownership should occur by using this product, we will be exempted from the responsibility unless it directly relates to the production process or functions of the product.
- 5. Product Application
- 5.1 Application of this product is intended for and limited to the following applications: audio-video device, office automation device, communication device, consumer electronics, smartphone, feature phone, and amusement machine device. This product must not be used for applications that require extremely high-reliability/safety such as aerospace device, traffic device, transportation device, nuclear power control device, combustion chamber device, medical device related to critical care, or any kind of safety device.
- 5.2 This product is not intended to be used as an automotive part, unless the product is specified as a product conforming to the demands and specifications of ISO/TS16949 ("the Specified Product") in this data sheet. Thine Electronics, Inc. ("Thine") accepts no liability whatsoever for any product other than the Specified Product for it not conforming to the aforementioned demands and specifications.
- 5.3 THine accepts liability for demands and specifications of the Specified Product only to the extent that the user and Thine have been previously and explicitly agreed to each other.
- 6. Despite our utmost efforts to improve the quality and reliability of the product, faults will occur with a certain small probability, which is inevitable to a semi-conductor product. Therefore, you are encouraged to have sufficiently redundant or error preventive design applied to the use of the product so as not to have our product cause any social or public damage.
- 7. Please note that this product is not designed to be radiation-proof.
- 8. Testing and other quality control techniques are used to this product to the extent THine deems necessary to support warranty for performance of this product. Except where mandated by applicable law or deemed necessary by THine based on the user's request, testing of all functions and performance of the product is not necessarily performed.
- 9. Customers are asked, if required, to judge by themselves if this product falls under the category of strategic goods under the Foreign Exchange and Foreign Trade Control Law.
- 10. The product or peripheral parts may be damaged by a surge in voltage over the absolute maximum ratings or malfunction, if pins of the product are shorted by such as foreign substance. The damages may cause a smoking and ignition. Therefore, you are encouraged to implement safety measures by adding protection devices, such as fuses.

THine Electronics, Inc.

sales@thine.co.jp

Copyright©2018 THine Electronics, Inc.